Comparison of Thorax Support Systems after Median Sternotomy; Evaluation of Force Distribution in a Biomechanical Analysis

1 M. Gorlitzer, 2 R. Holzer, 3 M. Bija, 4 E. Unger, 1 S. Folkman, 3 F. Wagner, 4 S. Pfeiffer, 1 M. Grabenwöger

Depts of Cardiovascular Surgery
1 Vienna, 2 Hamburg, 3 Nürnberg
3 Medical University of Vienna, Center for Biomechanical Technology and Physics

40th Annual Meeting of the German Society for Thoracic- and Cardiovascular Surgery, Feb 14, 2011

Project supported by the Science Foundation of the Mayor of the City of Vienna

1. Prevention of sternal instability after heart surgical procedures
2. Determine the efficiency of support systems using pressure sensor testing along the thorax wall
Background

Sternum dehiscence: up to 10%
Infections: up to 4%
- Mortality ~ 25%
- Prolonged hospitalization
- 2.8x higher cost

Posthorax® Sternum Support Vest Compared to a Flexible Bandage

Using pressure sensors placed between the devices and around the thorax to measure how well each absorbs the forces produced by deep breathing, movement, and coughing.
A newly designed thorax support vest prevents sternum instability after median sternotomy

Michael Gorlitzer, Sandra Folkmann, Johann Meinhardt, Peter Poslusny, Markus Thalmann, Gabriel Weiss, Manfred Bijak, Martin Grabenwöger

Department of Cardiovascular Surgery, Hospital Herzzentrum, Weltenburgergasse 1, A-1400 Vienna, Austria

*Robert-Bosch-Institute for Cardiac Surgery Research, Hospital Herzzentrum, Weltenburgergasse 1, A-1400 Vienna, Austria

Received 2 September 2000; revised in revised form 10 January 2001; accepted 21 January 2001. Available online 9 March 2001

Abstract

Objective: Sternum infection remains one of the primary causes of postoperative mortality and morbidity after median sternotomy. We report the clinical efficacy for primary reinforcement of sternotomy with a new design of thorax support vest. Methods: A prospective randomized study including 455 patients was started in September 2000 to evaluate the effectiveness of the Posthorax® support vest (Enplec Inc., Vienna, Austria). One hundred and seventy-five patients were treated with the sternum dressing postoperatively (group A). 227 patients did not receive the vest (group B). The clinical and operative data were evaluated. All patients were recorded using the STS risk scoring analysis for medicolegal after cardiac surgery. Results: The median age and gender distribution were comparable in both groups. Preoperative data like renal failure, chronic obstructive pulmonary disease, peripheral artery disease, and myocardial infarction were not significant. There were more patients with diabetes in group A and C (4, 39.4). B: 23.1, C: 34.0, p = 0.036. A total of 9.8% underwent coronary artery bypass grafting, 5.4% atrial valve replacement, and 7.2% reoperative and 21.6% concomitant cardiac procedures. The median risk factor analysis and body mass index were comparable. In the follow-up period of 90 days, in group A we observed 6.8% sternum wound complications, in group B 4.9%, and in group C 4.8%. A: B = 0.0152, and group A versus C = 0.0029. Conclusions: The use of the Posthorax® sternum vest shows a favorable outcome to prevent sternum instability after cardiac surgery. There was one reoperation in patients treated with this sternum vest compared to 14 in the control group.

2001 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

Keywords: Sternum instability, Thorax vest, Mediastinitis, Infection

A prospective randomized multicenter trial shows improvement of sternum related complications in cardiac surgery with the Posthorax® support vest

Michael Gorlitzer, Florian Wagner, Steffen Pfeiffer, Sandra Folkmann, Johann Meinhardt, Theodor Fischleiner, Hermann Reichenspurner, Martin Grabenwöger

Department of Cardiovascular Surgery, University Hospital Salzburg, Austria

Department of Cardiovascular Surgery, Martin Luthe Hospital, Wurzburg, Germany

Received 29 September 2000; revised in revised form 21 January 2001; accepted 26 January 2001

Abstract

Sternal instability, delusion and mediastinitis are major causes of morbidity and mortality in cardiac surgery. The aim of this study is to determine the effect of a Posthorax® support vest (Enplec Inc., Vienna, Austria) after median sternotomy. One thousand five hundred and sixty-nine patients were included in a prospective randomized multicenter trial. Patients were randomized as follows: 151 received a flexible dressing postoperatively (group AI) and 655 patients were given a Posthorax® support vest (group B). Patients in groups A and B were well matched. Their mean age was 68 years (range: 14–87 years). The patient characteristics and operative data were equally distributed in both groups. The mean total hospital stay was significantly shorter in group B than in group A (AI: 17.5; B: 14.7, 7.6; p = 0.04). Sternal wound complications necessitating reoperation during the 90 days follow-up period were observed in 3.5%. The use of the Posthorax® sternum support vest is a valuable adjunct to prevent sternal-related complications after cardiac surgery. In the 90 days follow-up period, additional surgical procedures were significantly reduced by the use of the support vest.

© 2001 Published by European Association for Cardio-Thoracic Surgery. All rights reserved.

Keywords: Mediastinitis, Sternum, Infection, Postoperative care
Pressure Sensor Design and Location Around the Thorax

8 pressure sensors are placed around the thorax, between the device and the thorax wall.

Median Counter Pressure in NM/cm²

<table>
<thead>
<tr>
<th>Sensor Location</th>
<th>Median Values</th>
<th>Postthorax® Vest</th>
<th>Elastic Bandage</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor 0</td>
<td>2.28</td>
<td>0.89</td>
<td></td>
<td>p<0.05</td>
</tr>
<tr>
<td>Sensor 1</td>
<td>1.35</td>
<td>1.18</td>
<td></td>
<td>n.s.</td>
</tr>
<tr>
<td>Sensor 2</td>
<td>1.66</td>
<td>1.35</td>
<td></td>
<td>n.s.</td>
</tr>
<tr>
<td>Sensor 3</td>
<td>2.37</td>
<td>1.22</td>
<td></td>
<td>p<0.05</td>
</tr>
<tr>
<td>Sensor 4</td>
<td>2.35</td>
<td>2.43</td>
<td></td>
<td>n.s.</td>
</tr>
<tr>
<td>Sensor 5</td>
<td>1.71</td>
<td>1.28</td>
<td></td>
<td>n.s.</td>
</tr>
<tr>
<td>Sensor 6</td>
<td>1.28</td>
<td>1.26</td>
<td></td>
<td>n.s.</td>
</tr>
<tr>
<td>Sensor 7</td>
<td>0.167</td>
<td>0.1</td>
<td></td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Significant differences in the dorsal ventral axis
Sensor = 0 & 3
Maximum counter pressure in NM/cm²

<table>
<thead>
<tr>
<th>Sensor Location</th>
<th>Maximum Values</th>
<th>Posthorax® Vest</th>
<th>Elastic Bandage</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor 0</td>
<td>3.6</td>
<td>1.5</td>
<td></td>
<td>p<0.05</td>
</tr>
<tr>
<td>Sensor 1</td>
<td>3.04</td>
<td>2.1</td>
<td></td>
<td>n.s.</td>
</tr>
<tr>
<td>Sensor 2</td>
<td>3.9</td>
<td>2.5</td>
<td></td>
<td>n.s.</td>
</tr>
<tr>
<td>Sensor 3</td>
<td>6.3</td>
<td>2.7</td>
<td></td>
<td>p<0.05</td>
</tr>
<tr>
<td>Sensor 4</td>
<td>6.9</td>
<td>4.1</td>
<td></td>
<td>p<0.05</td>
</tr>
<tr>
<td>Sensor 5</td>
<td>4.2</td>
<td>2</td>
<td></td>
<td>p<0.05</td>
</tr>
<tr>
<td>Sensor 6</td>
<td>2.9</td>
<td>1.8</td>
<td></td>
<td>n.s.</td>
</tr>
<tr>
<td>Sensor 7</td>
<td>3.4</td>
<td>1.9</td>
<td></td>
<td>p<0.05</td>
</tr>
</tbody>
</table>

Significant differences in the dorsal ventral axis
Sensor = 0,3,4,5,7

Counter - Pressure of up to 8 NM / cm² by the Posthorax® Vest

breathing - deep breathing - coughing - movement
Counter - Pressure of up to 2.5 NM / cm² by the Flexible Bandage

breathing - deep breathing - coughing - movement

Additional Measurements Inside the Sternum Fracture

Thorax model
Traction Power Inside Sternum

1: Without support 2: Flexible bandage 3: Posthorax® vest
4: Posthorax® vest loose 5: Posthorax® vest moved up

Digital 3D Model

Camera positions around the 3D-model of the thorax
Digitalized 3D Model

Conclusion

- The Posthorax® sternum vest produces significantly higher counter pressure on the thorax wall around the sternum in the dorsal ventral axis.
- In the thorax model a significant reduction of tension and tractive power was observed.
- Digitalized 3D-model for more information
- michael.gorlitzer@wienkav.at
Comparison of thorax support systems after median sternotomy: Evaluation of force distribution in a biomechanical analysis

M. Gorlitzer¹, M. Bijak², M. Egger³, S. Folkmann¹, E. Unger², R. Moidl¹, M. Grabenwöger¹

Heartcenter Hietzing, Vienna, Austria,
²Medical University Vienna, Center for Biomedical Technology and Physics, Vienna, Austria.

Abstract text:

Objectiv

Based on the clinical success using the Posthorax support vest to prevent sternum related complications the biomechanical mechanism of different sternum support systems were evaluated.

Methods

Elastic bandages were compared with the Posthorax support vest in 27 patients after sternotomy and 27 volunteers. The effect of the supportive devices was acquired with eight special designed high sensitive real time pressure transducers, which were placed between chest wall and support devices. Measuring points during normal breathing, coughing and arm movement were analyzed.

Results

The Posthorax support vest proved to be superior in the parasternal and posterior region comparing with the elastic bandage in all groups at normal breathing (Sensor 0+4: 2.788±0.79 N vs 0.88±0.2 N and Sensor 3+7: 2.06±0.88 N vs. 0.78±0.04 N; p= 0.001).

During coughing and arm movement all sensors at the anterior and posterior chest wall revealed a significant higher pressure using the Posthorax support vest (Sensor 0+4: 3.34±0.98 N vs. 1.47±0.59 N; Sensor 3+7: 5.69±2.99 N vs. 1.92±0.7 N; p= 0.001).

Conclusion

The findings of the study proved a positive biomechanical effect of the Posthorax support vest in the anteroposterior movement which predicates its favorable clinical effect in avoiding sternum related complications.